将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形
证明:∵在△BDC 中,BC=DE,
∴∠BDC=∠BCD.
∵∠DEF=30°,
∴∠BDC=∠BCD=75°,
∵∠ACB=45°,
∴∠DOC=30°+45°=75°.
∴∠DOC=∠BDC,
∴△CDO是等腰三角形.
已知⊙O1与⊙O2的半径r1=2、r2=4,若⊙O1与⊙O2的圆心距d=5.则⊙O1与⊙O2的位置关系是____ .
读澳大利亚图,回答下题。