题干

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)如图1所示在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,求证:
①AF=AG=
1
2
AB;
②MD=ME.
(2)在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.(直接写答案,不需要写证明过程).
(3)在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?
上一题 下一题 0.0难度 选择题 更新时间:2011-11-05 12:21:36

答案(点此获取答案解析)

解:(1)①∵△ADB、△AEC是等腰直角三角形,DF⊥AB于点F,EG⊥AC于点G,
∴DF=AF=
1
2
AB,EG=AG=1