设函数f(x)=x2+ax+b,a,b∈R.
(1)若a+b=3,当x∈[1,2]时,f(x)≥0恒成立,求实数a的取值范围;
(2)是否存在实数对(a,b),使得不等式|f(x)|>2在区间[1,5]上无解,若存在,试求出所有满足条件的实数对(a,b);若不存在,请说明理由.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)若f(x)<ax+1有解,求实数a的取值范围.
3×6____12
25____5×5
4÷2____8
12÷3____3