题干

如图,AB是⊙O的直径,弦CD⊥AB于H.点G在⊙O上,过点G作直线EF,交CD延长线于点E,交AB的延长线于点F.连接AG交CD于K,且KE=GE.

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若AC∥EF,
A
H
A
C
=
3
5
,FB=1,求⊙O的半径.
上一题 下一题 0.0难度 选择题 更新时间:2018-07-24 09:31:16

答案(点此获取答案解析)

(1)如图,连接OG.
∵OA=OG,∴∠OGA=∠OAG.
∵CD⊥AB,∴∠AKH+∠OAG=90°.
∵KE=GE,
∴∠KGE=∠GKE=∠AKH.
∴∠KGE+∠OGA=∠AKH+∠OAG=90°.
∴∠OGE=90°,即OG⊥EF.
又∵G在圆O上,∴EF与圆O相切.

(2)∵AC∥EF, ∴∠