题干

定义:在平面直角坐标系中,点Q坐标为(x,y),若过点Q的直线l与x轴夹角为45°时,则称直线l为点Q的“湘依直线”.
(1)已知点A的坐标为(6,0),求点A的“湘依直线”表达式;
(2)已知点D的坐标为(0,﹣4),过点D的“湘依直线”图象经过第二、三、四象限,且与x轴交于C点,动点P在反比例函数y=(x>0)上,求△PCD面积的最小值及此时点P的坐标;
(3)已知点M的坐标为(0,2),经过点M且在第一、二、三象限的“湘依直线”与抛物线y=x2+(m﹣2)x+m+2相交与A(x1,y1),B(x2,y2)两点,若0≤x1≤2,0≤x2≤2,求m的取值范围.
上一题 下一题 0.65难度 解答题 更新时间:2018-11-30 07:48:21

答案(点此获取答案解析)