如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=40m,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了100m到达B处,测得∠CBN=70°.求河流的宽度CE(精确到1m).
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin 70°≈0.94,cos70°≈0.34,tan70°≈2.75).
解:过点C作CF∥DA交AB于点F.
∵MN∥PQ,CF∥DA,
∴四边形AFCD是平行四边形.
∴AF=CD=40m,∠CFB=35°.
∴FB=AB﹣AF=100﹣40=60m.
根据三角形外角性质可知,∠CBN=∠CFB+∠BCF,
∴∠BCF=70°﹣35°=35°=∠CFB,
∴BC=BF=60m.