(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:
+ b 2 a
+ c 2 b
≥3.a 2 c
由|x|≤m有解,得m≥0,且其解集为{x|﹣m≤x≤m}.
又f(x+2)≥0的解集为﹣3,3,故m=3.
所以f(x)+f(x+2)>0可化为:3﹣|x﹣2|+3﹣|x|>0,∴|x|+|x+2|<6.
①当x≤﹣2时,﹣x﹣x﹣2<6,∴x>﹣4,又x≤﹣2,∴﹣4<x≤﹣2;
②当﹣2<x≤0时,﹣x+x+2<6,∴2<6,成立;
③当x>0时,x+x