题干

已知函数f(x)=lnx,g(x)=
1
2
x2﹣bx+1(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若b=0,h(x)=f(x)﹣g(x),∃x1、x2[1,2]使得h(x1)﹣h(x2)≥M成立,求满足上述条件的最大整数M;
(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1,x2,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求b的取值范围.
上一题 下一题 0.0难度 选择题 更新时间:2017-10-16 04:03:51