题干

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.

(Ⅰ)求a、b的值;

(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

上一题 下一题 0.0难度 选择题 更新时间:2020-03-18 05:15:48

答案(点此获取答案解析)

解:(Ⅰ)f'(x)=6x2+6ax+3b,

因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.

{6+6a+<