某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.
∴第x档次,提高的档次是x﹣1档.
∴y=6+2(x﹣1)95﹣5(x﹣1),
即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);
(2)由题意可得:﹣10x2+180x+400=1120
整理得:x2﹣18x+72=0