题干

《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.
(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求
V
1
V
2
的值.
上一题 下一题 0.0难度 选择题 更新时间:2017-11-23 03:02:15

答案(点此获取答案解析)

(Ⅰ)证明:因为PD⊥底面ABCD,所以PD⊥BC,

因为ABCD为正方形,所以BC⊥CD,

因为PD∩CD=D,

所以BC⊥平面PCD,

因为DE⊂平面PCD,

所以BC⊥DE,

因为PD=CD,点E是PC的中点,

所以DE⊥PC,

因为PC∩BC=C,

所以DE⊥平面PBC,

由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,

即四面体