如图,四边形ABCD为矩形,E是BC延长线上一点,AE交CD于点G,F是AE上一点,并且AC=CF=EF,∠AEB=15°.
(1)求∠ACF的度数;
(2)证明:矩形ABCD为正方形.
解:(1)∵四边形ABCD为矩形,
∴AD∥BC,∠D=90°,
∴∠DAG=∠AEB=15°,
∵CF=EF,
∴∠FCE=∠AEB=15°,
∴∠AFC=∠FCE+∠AEB=30°,
∵AC=CF,
∴∠FAC=∠AFC=30°,
∴∠ACF=18O°﹣∠FAC﹣∠AFC=120°;
(2)由(1)知∠DAG=15°,∠FAC=30°,
∴∠DAC=∠DAG+∠FAC=