如图,△ABC中,AB=AC,作以AB为直径的⊙O与边BC交于点D,过点D作⊙O的切线,分别交AC、AB的延长线于点E、F.
(1)求证:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半径.
(1)证明:连接OD,AD,
∵EF是⊙O的切线,
∴OD⊥EF.
又∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC.
又∵AB=AC,
∴BD=DC.
∴OD∥AC.
∴AC⊥EF.
(2)解:设⊙O的半径为x.
∵OD∥AE,
∴△ODF∽△AEF.
∴ 同类题1 下列分散系最稳定的是( )