如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.
(1)求m的值;
(2)求抛物线E2所表示的二次函数的表达式;
(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
解:(1)∵抛物线E1经过点A(1,m)
∴m=12=1
(2)∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0)
又∵点B(2,2)在抛物线E2上
∴2=a×22,解得:a=