题干

平面上有7条不同的直线,如果其中任何三条直线都不共点.

(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;

(2)请再画出各直线之间的交点个数不同的图形(至少两个);

(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?

(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?

上一题 下一题 0.0难度 选择题 更新时间:2010-10-12 11:09:50

答案(点此获取答案解析)

解:(1)如图1所示;交点共有6个,(2)如图2,3.(3)当n=6时,必须有6条直线平行,都与一条直线相交.如图4,当n=21时,必须使7条直线中的每2条直线都相交(即无任何两条直线平行)如图5,当n=15时,如图6,(4)当我