我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.
a2+6a+8=a2+6a+9﹣1
=(a+3)2﹣1
=[(a+3)+1][(a+3)﹣1]
=(a+4)(a+2)
请仿照上面的做法,将下列各式分解因式:
(1)x2﹣6x﹣27
(2)x2﹣2xy﹣3y2.
解:(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);
(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).