已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?
解:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24﹣t,CQ=2t,BQ=30﹣2t.
(1)若四边形PDCQ是平行四边形,则PD=CQ,∴24﹣t=2t,∴t=8,∴8秒后四边形PDCQ是平行四边形;
(2)若四边形APQB是平行四边形,则AP=BQ,∴t=30﹣2t,∴t=10,∴10秒后四边形APQB是平行四边形.
∴出发后10秒或8秒其中一个是平行四边形.