为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占
,统计成绩后,得到如下的2×2列联表:
| 分数大于等于120分 | 分数不足120分 | 合 计 |
周做题时间不少于15小时 | _ | 4 | 19 |
周做题时间不足15小时 | _ | _ | _ |
合 计 | _ | _ | 45 |
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)(i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
(ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:
K2=n |
( |
a |
d |
− |
b |
c |
) |
2 |
( |
a |
+ |
b |
) |
( |
c |
+ |
d |
) |
( |
a |
+ |
c |
) |
( |
b |
+ |
d |
) |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |