(Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.
准线方程为l:x=﹣1,
∴点N的轨迹C的方程y2=4x;
(Ⅱ)设A(
夏季高温时段,用较低温度的地下水灌溉,容易导致农作物萎蔫.其主要原因是( )
如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线 y=kx (k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
二次函数图象如图所示,则其解析式是( )