题干

如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.

(1)求证:AB=DC;

(2)试判断△OEF的形状,并说明理由.

上一题 下一题 0.0难度 选择题 更新时间:2016-10-17 02:54:41

答案(点此获取答案解析)

证明:(1)∵BE=CF,

∴BE+EF=CF+EF,

即BF=CE.

又∵∠A=∠D,∠B=∠C,

∴△ABF≌△DCE(AAS),

∴AB=DC.

(2)解:△OEF为等腰三角形

理由如下:∵△ABF≌△DCE,

∴∠AFB=∠DEC,

∴OE=OF,

∴△OEF为等腰三角形.