如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.
解:∵∠ACB=105°,∠B=25°,
∴∠BAC=180°﹣∠ACB﹣∠B=180°﹣105°﹣25°=50°,
∵∠CAD=10°,
∴∠BAF=∠BAC+∠CAD=50°+10°=60°,
在△ABF中,∠DFB=∠B+∠BAF=25°+60°=85°;
∵∠D=25°,
∴在△DGF中,∠DGB=∠DFB﹣∠D=85°﹣25°=60°.