已知:二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上.
(1)请写出m与n的关系式,并判断已知中函数图象的开口方向;
(2)是否存在整数m,n的值,使函数图象的对称轴与x轴的交点横坐标为整数?若存在,请求出m,n的值;若不存在,请说明理由;
(3)若y关于x的函数关系式为y=nx2﹣m2x﹣2n﹣2
①当n≠0时,求该函数必过的定点坐标;
②探索这个函数图象与坐标轴有两个交点时n的值.
解:(1)∵二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上,
∴4m2﹣4(n﹣1)=0,
∴n﹣1=m2,
∴n=m2+1,
∵n﹣1≠0,且m2≥0
∴n﹣1>0,
∴图象开口向上;
(2)∵y=(n﹣1)x2+2mx+1,
∴对称轴x=