题干

已知函数fx=-x3+x2+bx+c,x<1alnx,x1,当x=
2
3
时,函数f(x)有极大值27
4
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.
上一题 下一题 0.0难度 选择题 更新时间:2020-02-23 09:40:17

答案(点此获取答案解析)

解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b
∵当x=
2
3
时,函数f(x)有极大值27
4
∴f