题干

如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明AB⊥A1C;

(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.


上一题 下一题 0.0难度 选择题 更新时间:2016-11-30 11:39:30

答案(点此获取答案解析)

解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,

因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,

所以△AA1B为等边三角形,所以OA1⊥AB,

又因为OC∩OA1=O,所以AB⊥平面OA1C,

又A1C⊂平面OA1