题干

在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.

(Ⅰ)求C1,C2的极坐标方程;

(Ⅱ)若直线C3的极坐标方程为θ=

π
4
(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.
上一题 下一题 0.0难度 选择题 更新时间:2017-08-12 07:09:01

答案(点此获取答案解析)

解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的

极坐标方程为 ρcosθ=﹣2,

故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:

(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,

化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.

(Ⅱ)把直线C3