如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.
证明:∵∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∴∠BEC=∠ACE+∠A=∠ACE+45°,
∵∠ECF=45°,
∴∠ACF=∠ACE+45°,
∴△ACF∽△BEC.
⑴Open the door, please. ____ A.
⑵Close the window, please. ____ B.
⑶Open the window, please. ____ C.
⑷Close the door, please. ____ D.