如图,AG是正八边形ABCDEFGH的一条对角线.
(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;
(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.
解:(1)连接BF,则有BF∥AG.
理由如下:
∵ABCDEFGH是正八边形,
∴它的内角都为135°.
又∵HA=HG,
∴∠1=22.5°,
从而∠2=135°﹣∠1=112.5°.
由于正八边形ABCDEFGH关于直线BF对称,
∴∠3=
水平放置的矩形ABCD,长AB=4,宽BC=2,以AB、AD为轴作出斜二测直观图A′B′C′D′,则四边形A′B′C′D′的面积为( )