如图,点P是⊙O外一点,过点P作⊙O的切线,切点为A,连接PO并延长,交⊙O于B、C两点.
(1)求证:△PBA∽△PAC;
(2)若∠BAP=30°,PB=2,求⊙O的半径.
解:(1)证明:∵PA作⊙O的切线,切点为A,
∴∠PAB=∠C,
又∵∠P=∠P,
∴△PBA∽△PAC;
(2)∵PA作⊙O的切线,切点为A,
∴∠OAP=90°,
∵∠BAP=30°,
∴∠OAB=60°,
∵OA=OB,
∴∠ABO=60°,
∴∠P=30°
∴∠AOB=90°﹣∠P=90°﹣30°=60°.
∵OA=OB
∴△O