题干

如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求
A
M
A
P
的值,若不存在,说明理由.
上一题 下一题 0.0难度 选择题 更新时间:2018-02-18 04:25:08

答案(点此获取答案解析)

(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

且AB⊥AD,AB⊂平面ABCD,

∴AB⊥平面PAD,

∵PD⊂平面PAD,

∴AB⊥PD,

又PD⊥PA,且PA∩AB=A,

∴PD⊥平面PAB;

(Ⅱ)解:取AD中点为O,连接CO,PO,

∵CD=AC=