在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).
(1)若A,B,P三点的“矩面积”为12,求点P的坐标;
(2)直接写出A,B,P三点的“矩面积”的最小值.
解:(1)由题意:“水平底”a=1﹣(﹣3)=4,
当t>2时,h=t﹣1,
则4(t﹣1)=12,
解得t=4,
故点P的坐标为(0,4);
当t<1时,h=2﹣t,
则4(2﹣t)=12,
解得t=﹣1,
故点P的坐标为(0,﹣1),
所以,点P的坐标为(0,4)或(0,﹣1);
(2)∵a=4,
∴t=1或2时,“铅垂高”h最小为1,
此时,A