题干

如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.

(1)求证:∠CAD =∠CAB;
(2)已知抛物线y=ax2+bx+c过A、B、C三点,AB=10,tan∠CAD=
1
2

① 求抛物线的解析式;
② 判断抛物线的顶点E是否在直线CD上,并说明理由;
③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.
上一题 下一题 0.0难度 选择题 更新时间:2017-12-11 05:23:43

答案(点此获取答案解析)

(1)证明:连接O′C,

∵CD是⊙O′的切线,
∴O′C⊥CD,
∵AD⊥CD,
∴O′C∥AD,
∴∠O′CA=∠CAD,
∵O′A=O′C,
∴∠CAB=∠O′CA,
∴∠CAD=∠CAB;
(2)解:①∵AB是⊙O′的直径,
∴∠ACB=90°,
∵OC⊥AB,
∴∠CAB=