如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.
解:∵AB⊥MN,
∴∠ABC=90°,
同理∠EDC=90°,
∴∠ABC=∠EDC,
在△ABC和△EDC中
∠ABC=∠E<
A:Wow! What a great model plane! Is it yours,Jack?
B:Yes,it's mine.
A:____
B:For two days.
B:At Green Store。
B:It's six dollars.
B:I've given it to Peter.
B:Because he likes it a lot.
A.How much is it?
B.Why did you give it to Peter?
C.How long have you had it?
D.Where did you buy it?
E.Why are you selling it?
F.Where's your old model plane?
G.Can I have a look at your old model plane?
频率分布表
器材种类
频数
频率
排 球
20
乒乓球拍
50
0.50
篮 球
25
0.25
足 球
合 计
1
如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM的和最小时,ME的长度为( )