题干

如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.

(1)求证:∠ADB=∠E;

(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.

(3)当AB=5,BC=6时,求⊙O的半径.

 

上一题 下一题 0.0难度 选择题 更新时间:2019-03-03 01:03:10

答案(点此获取答案解析)

(1)证明:∵在△ABC中,AB=AC,∴∠ABC=∠C.∵DE∥BC,∴∠ABC=∠E,∴∠E=∠C,又∵∠ADB=∠C,∴∠ADB=∠E;(2)解:当点D是弧BC的中点时,DE是⊙O的切线(如图1).理由是:∵当点D是弧BC的中点时,AB=AC,∴AD是BC的垂直平分线,∴AD是直径,∴AD⊥BC,∴AD过圆心O,又∵DE∥BC,∴AD⊥ED.∴DE是⊙O的切线;(3)解:过点A作AF⊥BC于F,连接BO(如图2),则点F是BC的中点,BF=