题干

阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2
x2+2ax+a2a2﹣3a2
=(x+a2﹣(2a2
=(x+3a)(xa
材料2.因式分解:(x+y2+2(x+y)+1
解:将“x+y”看成一个整体,令x+yA,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2﹣6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(ab2+2(ab)+1;
②分解因式:(m+n)(m+n﹣4)+3.
上一题 下一题 0.65难度 解答题 更新时间:2018-12-26 08:20:46

答案(点此获取答案解析)