题干

因式分解是学习分式的重要基础,面对一些看似复杂的二次三项式,我们可以综合平方差公式和完全平方公式进行分解,例如:
x2﹣2x﹣3=x2﹣2x+12﹣12﹣3=(x﹣1)2﹣4=[(x﹣1)+2][(x﹣1)﹣2]=(x+1)(x﹣3);
x2﹣4x+3=x2﹣4x+22﹣22+3=(x﹣2)2﹣1=[(x﹣2)+1][(x﹣2)﹣1]=(x﹣1)(x﹣3);
x2+6x+5=x2+6x+32﹣32+5=(x+3)2﹣4=[(x+3)+2][(x+3)﹣2]=(x+5)(x+1);
x2+8x﹣20=x2+8x+42﹣42﹣20=(x+4)2﹣36=[(x+4)+6][(x+4)﹣6]=(x+10)(x﹣2)

根据上述的提示,解答下列问题:
(1)仿照提示中的步骤,证明x2﹣10x﹣56=(x﹣14)(x+4);
(2)对二次三项式x2+10x﹣24进行因式分解.
上一题 下一题 0.65难度 解答题 更新时间:2019-01-12 06:09:12

答案(点此获取答案解析)