题干

已知函数f(x)=lnx+
m
2
x
,g(x)=x﹣2m,其中m∈R,e=2.71828…为自然对数的底数.
(Ⅰ)当m=1时,求函数f(x)的极小值;
(Ⅱ)对∀x∈[
1
e
,1],是否存在m∈(
1
2
,1),使得f(x)>g(x)+1成立?若存在,求出m的取值范围;若不存在,请说明理由;
(Ⅲ)设F(x)=f(x)g(x),当m∈(
1
2
,1)时,若函数F(x)存在a,b,c三个零点,且a<b<c,求证:0<a<
1
e
<b<1<c.
上一题 下一题 0.0难度 选择题 更新时间:2019-07-30 10:32:34