如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O﹣CE﹣B的余弦值.
解:(Ⅰ)证明:连结GO,OH
∵GO∥AD,OH∥AC…(2分)
∴GO∥平面ACD,OH∥平面ACD,又GO交HO于O…(.4分)
∴平面GOH∥平面ACD…(5分)
∴GH∥平面ACD…(6分)
(Ⅱ)以CB为x轴,CA为y轴,CD为z轴,建立如图所示的直角坐标系
则C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2)
平面BCE的法向量