刷题首页
题库
高中数学
题干
气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:
日最高气温t
(单位:℃)
t≤22℃
22℃<t≤28℃
28℃<t≤32℃
t>32℃
天数
6
12
X
Y
由于工作疏忽,统计表被墨水污染, X和Y数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
(1)若把频率看作概率,求X,Y的值;
(2)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此判断是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
高温天气
非高温天气
合计
旺销
1
不旺销
6
合计
附:
P(K
2
≥k)
0.10
0.050
0.025
0.010
0.005
0.001
K
2.706
3.841
5.024
6.635
7.879
10.828
上一题
下一题
0.99难度 解答题 更新时间:2016-06-30 04:25:19
答案(点此获取答案解析)
同类题1
随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在
市的使用情况,某调研机构在该市随机抽取了
位市民进行调查,得到的
列联表如下:
经常使用
偶尔或不用
合计
岁及以下的人数
岁以上的人数
合计
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为使用共享单车的情况与年龄有关?
(2)现从所抽取的
岁以上的市民中利用分层抽样的方法再抽取
位市民,从这
位市民中随机选出
位市民赠送礼品,求选出的
位市民中至少有
位市民经常使用共享单车的概率.
参考公式及数据:
,
.
同类题2
某种产品的广告费用支出
(万元)与销售额
(万元)之间有如下的对应数据:
2
4
5
6
8
30
40
60
50
70
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
参考公式:
同类题3
某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了
所学校,并组织专家对两个必检指标进行考核评分.其中
分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为
(优秀)、
(良好)、
(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为
等级的共有
所学校.已知两项指标均为
等级的概率为0.21.
(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面
列联表,并根据列联表判断是否有
的把握认为“学校的基础设施建设”和“学校的师资力量”有关;
师资力量(优秀)
师资力量(非优秀)
合计
基础设施建设(优秀)
基础设施建设(非优秀)
合计
(2)在该样本的“学校的师资力量”为
等级的学校中,若
,记随机变量
,求
的分布列和数学期望.
附:
同类题4
心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)
立体几何题
代数题
总计
男同学
22
8
30
女同学
8
12
20
总计
30
20
50
(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(2)经统计得,选择做立体几何题的学生正答率为
,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记抽取的两人中答对的人数为
,求
的分布列及数学期望.
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题5
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了
至
月份每月
号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据资料:
日期
月
日
月
日
月
日
月
日
月
日
月
日
昼夜温差
就诊人数
该兴趣小组确定的研究方案是:先从这
组(每个有序数对
叫作一组)数据中随机选取
组作为检验数据,用剩下的
组数据求线性回归方程.
(Ⅰ)求选取的
组数据恰好来自相邻两个月的概率;
(Ⅱ)若选取的是
月和
月的两组数据,请根据
至
月份的数据,求出
关于
的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过
人,则认为得到的线性回归方程是理想的,试问(Ⅱ)中所得到的线性回归方程是否是理想的?
参考公式:
.
相关知识点
计数原理与概率统计
统计案例