刷题首页
题库
高中数学
题干
“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图(二)是折扇的示意图,
为
的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-27 05:10:43
答案(点此获取答案解析)
同类题1
赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设
,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( ).
A.
B.
C.
D.
同类题2
如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为
,若向弦图内随机抛掷500颗米粒(大小忽略不计,取
),则落在小正方形(阴影)内的米粒数大约为( )
A.134
B.67
C.200
D.250
同类题3
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.若直角三角形中较小的锐角
,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在阴影区域概率是( )
A.
B.
C.
D.
同类题4
如图,圆
和其内接正三角形
,若在圆面上任意取一点
,则点
恰好落在三角形
外的概率为
____
.
同类题5
如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点, 这一点落在小正方形内的概率为
, 若直角三角形的两条直角边的长分别为
,则
()
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型
几何概型计算公式
几何概型-面积型