刷题首页
题库
高中数学
题干
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了
X
个球该局比赛结束.
(1)求
P
(
X
=2);
(2)求事件“
X
=4且甲获胜”的概率.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-11 06:19:23
答案(点此获取答案解析)
同类题1
(本小题满分12分)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位名
男
女
总计
看营养说明
50
30
80
不看营养说明
10
20
30
总计
60
50
110
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系?
下面的临界值表供参考:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:
,其中
)
同类题2
投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点
P
的横坐标和纵坐标.
(1)求点
P
落在区域
C
:
x
2
+
y
2
≤10上的概率;
(2)若以落在区域
C
上的所有点为顶点作面积最大的多边形区域
M
,在区域
C
上随机撒一粒豆子,求豆子落在区域
M
上的概率.
同类题3
一大学生毕业找工作,在面试考核中,他共有三次答题机会(每次问题不同).假设他能正确回答每题的概率均为
,规定有两次回答正确即通过面试,那么该生“通过面试”的概率为
.
同类题4
口袋中装着标有数字1,2,3,4的小球各2个,从口袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性相等,用
表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)计分介于17分到35分之间的概率.
同类题5
某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中二等奖的概率;
(2)求未中奖的概率.
相关知识点
计数原理与概率统计
概率