刷题首页
题库
高中数学
题干
已知数列{
a
n
}和{
b
n
}满足:
a
1
=
λ
,
a
n
+1
=
a
n
+
n
-4,
b
n
=(-1)
n
(
a
n
-3
n
+21),其中
λ
为实数,
n
为正整数.
(1)对任意实数
λ
,证明:数列{
a
n
}不是等比数列;
(2)试判断数列{
b
n
}是否为等比数列,并证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2014-03-26 02:57:46
答案(点此获取答案解析)
同类题1
已知数列
为等比数列,若
,则数列
的前
项之积
等于( )
A.
B.
C.
D.
同类题2
中,若
则
()
A.128
B.-128
C.256
D.-256
同类题3
已知数列
是递增的等比数列,
,
,则数列
的前
项和等于__________.
同类题4
设数列
的前
项和为
,且满足
.
(1)若
为等比数列,求
的值及数列
的通项公式;
(2)在(1)的条件下,设
,求数列
的前
项和
.
同类题5
等比数列{
a
n
}中,
a
2
=1,
a
4
=4,则
a
6
=__.
相关知识点
数列
等比数列