刷题首页
题库
高中数学
题干
在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinA=
acosC,则sinA+sinB的最大值是( )
A.1
B.
C.
D.3
上一题
下一题
0.99难度 单选题 更新时间:2018-09-22 09:38:53
答案(点此获取答案解析)
同类题1
在
中,角
A
,
B
,
C
的对边分别为
,若
,则
的形状为
A.正三角形
B.等腰三角形或直角三角形
C.直角三角形
D.等腰直角三角形
同类题2
在
中,
分别为内角
的对边,若
,
,则
的面积的最大值为( )
A.
B.2
C.
D.4
同类题3
《数书九章》是中国南宋时期杰出数学家秦九韶的著作.其中在卷五“三斜求积”中提出了已知三角形三边
,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写出公式,即若
,则
,现有周长为
的
满足
,则用以上给出的公式求得
的面积为__________.
同类题4
的内角
所对的边分别为
,且
.
(1)求角
的大小;
(2)若
的面积为
,且
,求
的周长.
同类题5
已知
的三个内角
A
、
B
、
C
成等差数列,求证:
(
a
、
b
、
c
分别为角
A
、
B
、
C
的对边).
相关知识点
三角函数与解三角形
解三角形
正弦定理和余弦定理
正弦定理
正弦定理边角互化的应用
求三角形中的最值与范围