1.单选题- (共6题)
3.
将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD有公共点,则k的取值范围是( )


A.k≤2 | B.k≥![]() | C.![]() | D.![]() |
2.填空题- (共2题)
7.
如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B.过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(P不与B,C重合),连结PC,PD,则△PCD面积的最大值是 .

3.解答题- (共6题)
11.
王先生开轿车从A地出发,前往B地,路过服务区休息一段时间后,继续以原速度行驶,到达B地后,又休息了一段时间,然后开轿车按原路返回A地,速度是原来的1.2倍.王先生距离A地的路程y(km)与行驶的时间x(h)之间的函数图象如图所示.

(1)王先生开轿车从A地行驶到B地的途中,休息了 h;
(2)求王先生开轿车从B地返回A地时y与x之间的函数关系式(不要求写出自变量x的取值范围);
(3)王先生从B地返回A地的途中,再次经过从A地到B地时休息的服务区,求此时的x的值.

(1)王先生开轿车从A地行驶到B地的途中,休息了 h;
(2)求王先生开轿车从B地返回A地时y与x之间的函数关系式(不要求写出自变量x的取值范围);
(3)王先生从B地返回A地的途中,再次经过从A地到B地时休息的服务区,求此时的x的值.
12.
探究:如图①,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.点D在边AB上(D不与A,B重合),连结CD,过点C作CE⊥CD,且CE=CD,连结DE、AE.

求证:△BCD≌△ACE.
应用:如图②,在图①的基础上,点D在BA的延长线上,其他条件不变.若AD=
AB,AB=4,求DE的长.

求证:△BCD≌△ACE.
应用:如图②,在图①的基础上,点D在BA的延长线上,其他条件不变.若AD=

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:6
7星难题:0
8星难题:0
9星难题:5