1.单选题- (共4题)
2.填空题- (共3题)
3.解答题- (共5题)
9.
某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?
(1)根据题意,甲和乙两同学都先假设该校购买的乒乓球拍与羽毛球拍的数量能相同,并分别列出的方程如下:甲:
;乙:
,根据两位同学所列的方程,请你分别指出未知数x,y表示的意义:
甲:x表示 ;乙:y表示 ;
(2)该校购买的乒乓球拍与羽毛球拍的数量能相同吗?说明理由(写出完整的解答过程).
(1)根据题意,甲和乙两同学都先假设该校购买的乒乓球拍与羽毛球拍的数量能相同,并分别列出的方程如下:甲:


甲:x表示 ;乙:y表示 ;
(2)该校购买的乒乓球拍与羽毛球拍的数量能相同吗?说明理由(写出完整的解答过程).
10.
已知:如图,抛物线y=ax2+bx+2与x轴交于点A(4,0)、E(-2,0)两点,连结AB,过点A作直线AK⊥AB,动点P从A点出发以每秒
个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PC⊥x轴,垂足为C,把△ACP沿AP对折,使点C落在点D处.
(1)求抛物线的解析式;
(2)当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;
(3)若线段AC的长是线段BP长的
,请直接写出此时t的值;
(4)是否存在这样的时刻,使动点D到点O的距离最小?若存在请直接写出这个最小距离;若不存在,说明理由.

(1)求抛物线的解析式;
(2)当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;
(3)若线段AC的长是线段BP长的

(4)是否存在这样的时刻,使动点D到点O的距离最小?若存在请直接写出这个最小距离;若不存在,说明理由.

11.
一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.
(1)直接写出v与t的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.
(1)直接写出v与t的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:1
9星难题:2