1.单选题- (共8题)
2.
对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[
]=1,[﹣2.5]=﹣3.现对82进行如下操作:82
[
]=9
[
]=3
[
]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )







A.1 | B.2 | C.3 | D.4 |
6.
如图,在△ABC中,∠ACB=90°,∠B=32°.分别以A、B为圆心,大于
AB的长为半径画弧,两弧交于点D和E,连接DE,交AB于点F,连接CF,则∠AFC的度数为( )

A. 60° B. 62° C. 64° D. 65°


A. 60° B. 62° C. 64° D. 65°
7.
下列调查最适合于抽样调查的是( )
A.某校要对七年级学生的身高进行调查 |
B.卖早餐的师傅想了解一锅茶鸡蛋的咸度 |
C.班主任了解每位学生的家庭情况 |
D.了解九年级一班全体学生立定跳远的成绩 |
2.选择题- (共1题)
3.填空题- (共2题)
10.
万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为_____米.
11.
若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的
,则按改变的方式装卸,自始至终共需时间_____小时.

4.解答题- (共5题)
13.
如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?

14.
如图,一次函数y=k1x+b与反比例函数
的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.

(1)求一次函数与反比例函数的解析式.
(2)根据所给条件,请直接写出不等式k1x+b>
的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=
图象上的两点,且y1≥y2,求实数p的取值范围.


(1)求一次函数与反比例函数的解析式.
(2)根据所给条件,请直接写出不等式k1x+b>

(3)若P(p,y1),Q(﹣2,y2)是函数y=

15.
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(
,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:8
7星难题:0
8星难题:2
9星难题:3