1.单选题- (共9题)
3.
生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是( )
A. 3.6×10﹣5 B. 0.36×10﹣5 C. 3.6×10﹣6 D. 0.36×10﹣6
A. 3.6×10﹣5 B. 0.36×10﹣5 C. 3.6×10﹣6 D. 0.36×10﹣6
6.
如图, 抛物线
与
轴交于点A(-1,0),顶点坐标(1,n)与
轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①
;②
;③对于任意实数m,
总成立;④关于
的方程
有两个不相等的实数根.其中结论正确的个数为













A.1 个 | B.2 个 | C.3 个 | D.4 个 |
2.填空题- (共6题)
11.
我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.
14.
如图,平行于x轴的直线与函数y=
(k1>0,x>0),y=
(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为3,则k1﹣k2的值为_____.



3.解答题- (共4题)
17.
已知二次函数y=x2+bx+c+1的图象与x轴交于点A(x1,0)、B(x2,0),且x1<x2,与y轴的负半轴交于点C.
(1)当b=1时,求c的取值范围;
(2)如果以AB为直径的半圆恰好过点C,求c的值;
(3)在(2)的条件下,如果二次函数的对称轴l与x轴、直线BC、直线AC的延长线分别交于点D、E、F,且满足DE=2EF,求二次函数的表达式.
(1)当b=1时,求c的取值范围;
(2)如果以AB为直径的半圆恰好过点C,求c的值;
(3)在(2)的条件下,如果二次函数的对称轴l与x轴、直线BC、直线AC的延长线分别交于点D、E、F,且满足DE=2EF,求二次函数的表达式.

18.
如图,一次函数y1=kx+b(k,b为常数,k≠0)的图象与反比例函数y2=
(m为常数,m≠0)的图象相交于点M(1,4)和点N(4,n).
(1)反比例函数与一次函数的解析式.
(2)函数y2=
的图象(x>0)上有一个动点C,若先将直线MN平移使它过点C,再绕点C旋转得到直线PQ,PQ交x轴于点A,交y轴点B,若BC=2CA,求OA•OB的值.

(1)反比例函数与一次函数的解析式.
(2)函数y2=


19.
央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:4
9星难题:4