1.单选题- (共11题)
1.
启东恒大“海上威尼斯”正在圆陀角风景区全力打造一个完美的“东方威尼斯”,建成后将媲美九大世界著名海湾景区。据福布斯2017年9月19的最新数据显示,恒大集团董事局主席许家印以391亿美元的身价成中国新首富,略高于马化腾和马云。391亿用科学记数法表示为( )
A.3.91×108 | B.3.91×109 | C.3.91×1010 | D.3.91×1011 |
4.
A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2x+3(x+1)=13 | B.2(x+1)+3x=13 | C.2(x﹣1)+3x=13 | D.2x+3(x﹣1)=13 |
8.
如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
9.
如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )


A.直线的一部分 | B.圆的一部分 | C.双曲线的一部分 | D.抛物线的一部分 |
10.
丽华根据演讲比赛中九位评委所给的分数作了如下表格:
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
平均数 | 中位数 | 众数 | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数 | B.众数 | C.方差 | D.中位数 |
2.填空题- (共2题)
13.
如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=
x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=
x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△AnBnCn的面积为_____.(用含正整数n的代数式表示)



3.解答题- (共5题)
14.
如图,在数轴上点A表示数a,点B表示数b,点C表示数c.b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0
(1)填空:a= ,b= .
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与C之间的距离表示为BC.则BC= .(用含t的代数式表示)
(3)请问:|2AB﹣3BC|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.
(1)填空:a= ,b= .
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与C之间的距离表示为BC.则BC= .(用含t的代数式表示)
(3)请问:|2AB﹣3BC|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.

15.
从2开始,连续的偶数相加,它们和的情况如下表:
(1)若n=8时,则S的值为 .
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n= .
(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)
加数的个数n | 和S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×![]() |
(1)若n=8时,则S的值为 .
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n= .
(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)
16.
A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?

17.
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
18.
利用勾股定理可以在数轴上画出表示
的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足
,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为
的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,
,则斜边OF的长即为
.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示
的点)在下面的数轴上画出表示
的点M,并描述第三步的画图步骤:_______________________________________________________________.

第一步:(计算)尝试满足

第二步:(画长为



请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示



试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:4