辽宁省葫芦岛市2018年中考数学试卷

适用年级:初三
试卷号:67049

试卷类型:中考真题
试卷考试时间:2018/7/28

1.单选题(共8题)

1.
如果温度上升10℃记作+10℃,那么温度下降5℃记作(  )
A.+10℃B.﹣10℃C.+5℃D.﹣5℃
2.
下列运算正确的是(  )
A.﹣2x2+3x2=5x2B.x2•x3=x5C.2(x23=8x6D.(x+1)2=x2+1
3.
若分式的值为0,则x的值为(  )
A.0B.1C.﹣1D.±1
4.
如图,在ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是(  )
A.B.
C.D.
5.
如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为(  )
A.x>﹣2B.x<﹣2C.x>4D.x<4
6.
如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为(  )
A.15°B.55°C.65°D.75°
7.
下列几何体中,俯视图为矩形的是(  )
A.B.C.D.
8.
下列调查中,调查方式选择最合理的是(  )
A.调查“乌金塘水库”的水质情况,采用抽样调查
B.调查一批飞机零件的合格情况,采用抽样调查
C.检验一批进口罐装饮料的防腐剂含量,采用全面调查
D.企业招聘人员,对应聘人员进行面试,采用抽样调查

2.填空题(共5题)

9.
据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为__.
10.
分解因式:2a3﹣8a=________.
11.
如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=__.
12.
如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnBn+1Cn的面积为__.(用含正整数n的代数式表示)
13.
如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点
A.若,则=__

3.解答题(共6题)

14.
先化简,再求值:()÷,其中a=31+2sin30°.
15.
某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
16.
某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
17.
如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.
(1)求该抛物线的解析式;
(2)将△ABO绕点O旋转,点B的对应点为点F.
①当点F落在直线AE上时,求点F的坐标和△ABF的面积;
②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.
18.
如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.
(1)求一次函数和反比例函数的解析式;
(2)若直线AC与y轴交于点D,求△BCD的面积.
19.
在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.
(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长.
试卷分析
  • 【1】题量占比

    单选题:(8道)

    填空题:(5道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:3

    5星难题:0

    6星难题:10

    7星难题:0

    8星难题:2

    9星难题:4