1.单选题- (共6题)
2.
如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
3.
如图,已知线段AB,分别以A,B为圆心,大于
AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )



A.40° | B.50° | C.60° | D.70° |
6.
下面调查方式中,合适的是( )
A.调查你所在班级同学的体重,采用抽样调查方式 |
B.调查乌金塘水库的水质情况,采用抽样调査的方式 |
C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式 |
D.要了解全市初中学生的业余爱好,采用普查的方式 |
2.填空题- (共5题)
9.
一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣
,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.


3.解答题- (共5题)
13.
某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.
(1)该公司计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?
| A | B |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.8 | 1.4 |
该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.
(1)该公司计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?
14.
如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2
),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
(1)求抛物线的解析式,并直接写出点D的坐标;
(2)当△AMN的周长最小时,求t的值;
(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

(1)求抛物线的解析式,并直接写出点D的坐标;
(2)当△AMN的周长最小时,求t的值;
(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

15.
一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
销售单价x(元/kg) | 120 | 130 | … | 180 |
每天销量y(kg) | 100 | 95 | … | 70 |
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:1
9星难题:3