1.单选题- (共5题)
1.
如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是


A.绳的右端上移到b′,绳子拉力越大 |
B.将杆N向右移一些,绳子拉力变大 |
C.绳的两端高度差越小,绳子拉力越小 |
D.若换挂质量更大的衣服,则衣服架悬挂点右移 |
2.
以下涉及物理学史上的四个重大发现,其中说法不正确的是
A.卡文迪许通过扭秤实验,测定出了万有引力常量 |
B.奥斯特通过实验研究,发现了电流周围存在磁场 |
C.牛顿根据理想斜面实验,提出力是改变物体运动状态的原因 |
D.纽曼、韦伯在对理论和实验资料进行严格分析后,总结出后人称之为法拉第电磁感应定律的结论 |
3.
霍曼转移轨道(Hohmann transfer orbit)是一种变换太空船轨道的方法,此种轨道操纵名称来自德国物理学家瓦尔特·霍曼。在电影和小说《流浪地球》中,利用霍曼转移轨道,用最少的燃料地球会到达木星轨道,最终逃出太阳系。如图所示,科学家利用固定在地面的万台超级聚变发动机瞬间点火,使地球在地球轨道Ⅰ上的B点加速,通过运输轨道,再在运输轨道上的A点瞬间点火,从而进入木星轨道Ⅱ。关于地球的运动,下列说法中正确的是


A.在轨道Ⅱ上经过A的速度小于经过在轨道Ⅰ上B的速度 |
B.在轨道Ⅱ上经过A的动能大于在轨道Ⅰ上经过B的动能 |
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 |
D.在轨道Ⅱ上经过A的加速度小于在运输轨道上经过A的加速度 |
4.
如图所示,在空间有一坐标系xOy中,直线OP与x轴正方向的夹角为30o,第一象限内有两个方向都垂直纸面向外的匀强磁场区域I和II,直线OP是它们的边界,OP上方区域I中磁场的磁感应强度为B。一质量为m,电荷量为q的质子(不计重力)以速度v从O点沿与OP成30o角的方向垂直磁场进入区域I,质子先后通过磁场区域I和II后,恰好垂直打在x轴上的Q点(图中未画出),则下列说法正确的是


A.区域II中磁感应强度为![]() |
B.区域II中磁感应强度为3B |
C.质子在第一象限内的运动时间为![]() |
D.质子在第一象限内的运动时间为![]() |
5.
电荷量为Q1和Q2的两点电荷分别固定在x轴上的0、C两点,规定无穷远处电势为零,x轴上各点电势随x的变化关系如图所示。则


A.Q1带负电,Q2带正电 |
B.将一带负电的试探电荷自G点静止释放,仅在电场力作用下一定不能到达D点 |
C.G点处电场强度的方向沿x轴正方向 |
D.将一带负电的试探电荷从D点沿x轴正方向移到J点,电场力先做负功后做正功 |
2.多选题- (共3题)
6.
如图所示,质量均为m的物块a、b用一根劲度系数为k的轻弹簧相连接,放在倾角为θ的足够长光滑固定斜面上,且a是带电量为+q的绝缘物块,C为固定挡板,整个装置处于磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,系统处于静止状态。现用一外力F沿斜面方向拉物块a使之向上做匀加速运动,当物块a刚要离开斜面时物块b恰将离开挡板C。重力加速度大小为g,则此过程


A.物块a运动的距离为![]() |
B.物块a运动的时间为![]() |
C.外力F做的功为![]() |
D.弹簧弹力做的功为![]() |
7.
一列简谐横波沿x轴正方向传播,t=0时波形图如图中实线所示,此时波刚好传到c点;t=0.6 s时波恰好传到e点,波形如图中虚线所示,a、b、c、d、e是介质中的质点.下列说法正确的是______。


A.这列波的周期T=0.8 s |
B.当t=0.6 s时质点a速度沿y轴负方向 |
C.t=0.6 s时,质点e将要沿y轴正方向运动 |
D.质点d在这段时间内通过的路程为20 cm |
E.质点c在这段时间内沿x轴正方向移动了3 m |
8.
如图所示,在光滑绝缘水平面上有一单匝线圈ABCD,在水平外力作用下以大小为v的速度向右匀速进入竖直向上的匀强磁场,第二次以大小为
的速度向右匀速进入该匀强磁场,则下列说法正确的是



A.第二次进入与第一次进入时线圈中的电流之比为1:3 |
B.第二次进入与第一次进入时外力做功的功率之比为1:3 |
C.第二次进入与第一次进入时线圈中产生的热量之比为1:3 |
D.第二次进入与第一次进入时通过线圈中某一横截面的电荷量之比为1:3 |
3.解答题- (共3题)
9.
传送带以恒定速率v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=1 kg的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=10 N拉小物块,经过一段时间物块被拉到离地高为H=1.8m的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:

(1)物块在传送带上运动的时间;
(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?

(1)物块在传送带上运动的时间;
(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?
10.
小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53°,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g=10 m/s2,sin 53°=0.8,不计其它电阻、摩擦力以及拉杆和绳索的质量).求:

(1)CD棒进入磁场时速度v的大小;
(2)CD棒进入磁场时所受的安培力FA的大小;
(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.

(1)CD棒进入磁场时速度v的大小;
(2)CD棒进入磁场时所受的安培力FA的大小;
(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.
11.
如图所示
是一玻璃砖的截面图,一束光沿与
面成30°角从
边上的
点射入玻璃砖中,折射后经玻璃砖的
边反射后,从
边上的
点垂直于
边射出.已知
,
,
,
.真空中的光速
,求:

①玻璃砖的折射率;
②光在玻璃砖中从
传播到
所用的时间.














①玻璃砖的折射率;
②光在玻璃砖中从


4.实验题- (共2题)
12.
在“验证机械能守恒定律”的实验中,小明同学利用传感器设计实验:如图甲所示,将质量为m、直径为d的金属小球在一定高度h由静止释放,小球正下方固定一台红外线计时器,能自动记录小球挡住红外线的时间t,改变小球下落高度h,进行多次重复实验.此方案验证机械能守恒定律方便快捷,请完成以下问题:

(1)用螺旋测微器测小球的直径如图乙所示,则小球的直径d=____mm;
(2)为直观判断小球下落过程中机械能是否守恒,应作下列哪一个图象________;
(3)经正确的实验操作,小明发现小球动能增加量
mv2总是稍小于重力势能减少量mgh,你认为增加释放高度h后,两者的差值会________(填“增大”“缩小”或“不变”).

(1)用螺旋测微器测小球的直径如图乙所示,则小球的直径d=____mm;
(2)为直观判断小球下落过程中机械能是否守恒,应作下列哪一个图象________;
A.h-t图象 | B.h-![]() | C.h-t2图象 | D.h-![]() |

13.
要测量一节内阻较大的干电池的电动势和内阻,某同学设计了如图所示的实验电路,电路中的定值电阻R1=8 Ω.

(1)闭合开关前,应将滑动变阻器的滑片调到最右端.闭合开关后,调节滑动变阻器,记录多组电压表的示数U1、U2,填在下表中,请根据表格数据在图下所示的坐标系中作出U2-U1的_______图象.

根据作出的图象可得到电池的电动势E=____ V,电池的内阻r=____ Ω.
(2)由于电压表V1内阻的存在,测得的干电池电动势________(填“大于”“等于”或“小于”)电动势的真实值,测得的干电池内阻________(填“大于”“等于”或“小于”)内阻的真实值.

(1)闭合开关前,应将滑动变阻器的滑片调到最右端.闭合开关后,调节滑动变阻器,记录多组电压表的示数U1、U2,填在下表中,请根据表格数据在图下所示的坐标系中作出U2-U1的_______图象.
U1/V | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 |
U2/V | 1.05 | 0.90 | 0.75 | 0.70 | 0.45 | 0.30 |

根据作出的图象可得到电池的电动势E=____ V,电池的内阻r=____ Ω.
(2)由于电压表V1内阻的存在,测得的干电池电动势________(填“大于”“等于”或“小于”)电动势的真实值,测得的干电池内阻________(填“大于”“等于”或“小于”)内阻的真实值.
试卷分析
-
【1】题量占比
单选题:(5道)
多选题:(3道)
解答题:(3道)
实验题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:6
7星难题:0
8星难题:2
9星难题:1